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Faster relearning of an external perturbation, savings, offers a behav-
ioral linkage between motor learning and memory. To explain savings
effects in reaching adaptation experiments, recent models suggested
the existence of multiple learning components, each shows different
learning and forgetting properties that may change following initial
learning. Nevertheless, the existence of these components in rhythmic
movements with other effectors, such as during locomotor adaptation,
has not yet been studied. Here, we study savings in locomotor
adaptation in two experiments; in the first, subjects adapted to speed
perturbations during walking on a split-belt treadmill, briefly adapted
to a counter-perturbation and then readapted. In a second experiment,
subjects readapted after a prolonged period of washout of initial
adaptation. In both experiments we find clear evidence for increased
learning rates (savings) during readaptation. We show that the basic
error-based multiple timescales linear state space model is not suffi-
cient to explain savings during locomotor adaptation. Instead, we
show that locomotor adaptation leads to changes in learning param-
eters, so that learning rates are faster during readaptation. Interest-
ingly, we find an intersubject correlation between the slow learning
component in initial adaptation and the fast learning component in the
readaptation phase, suggesting an underlying mechanism for savings.
Together, these findings suggest that savings in locomotion and in
reaching may share common computational and neuronal mecha-
nisms; both are driven by the slow learning component and are likely
to depend on cortical plasticity.

computational motor control; locomotor adaptation; motor learning;
split-belt

OUR MOTOR SYSTEM IS KNOWN for its ability to rapidly adapt to
changes in the environment and changes of its own (Scheidt et
al. 2000; Thoroughman and Shadmehr 2000). It was suggested
that such adaptation depends on an error-based process that
gradually updates one’s controller based on the discrepancy
between forward model predictions and sensory inputs (e.g.,
sensory prediction errors) (Shadmehr and Mussa-Ivaldi 1994).
For example, when humans start to walk on split-belt treadmill
imposing different speeds to each leg, the sensory conse-
quences of the motor commands are different than expected,
causing kinematic (Reisman et al. 2005) and kinetic (Mawase
et al. 2013) motor errors. Exposed to such perturbation, sub-
jects gradually modulate the walking speed of each leg to adapt
to the speed imposed by the treadmill. Interestingly, this

learning process led to the formation of a motor memory that
can be recalled later (Malone et al. 2011; Shadmehr and
Brashers-Krug 1997).

Faster relearning of the same perturbation when introduced
again (i.e., savings) receives great attention in the motor
control community since it reflects the formation of a new
motor memory. Initial attempts to model adaptation to an
external perturbation were based on state space models (SSMs)
composed of a fast and one or multiple slow processes (Lee
and Schweighofer 2009; Smith et al. 2006). However, these
linear multiple-rate SSMs could not explain savings that occur
after a prolonged period of washout (Krakauer et al. 2005;
Zarahn et al. 2008) and across days (Robinson et al. 2006).
Instead, a recently nonlinear SSM (Zarahn et al. 2008) and
context-dependent models (Ingram et al. 2011; Lee and
Schweighofer 2009) were suggested to better explain a variety
of phenomena reported in the motor adaptation literature,
including savings. While evidence for savings has been accu-
mulated from different systems [saccades, arm reaching, and
locomotion (Kojima et al. 2004; Krakauer et al. 2005; Malone
et al. 2011)] and across paradigms [saccades, visuomotor; and
force filed adaptation (Kojima et al. 2004; Krakauer et al. 2005;
Smith et al. 2006; Zarahn et al. 2008)], adaptation and savings
were mainly modeled based on reaching and saccades adapta-
tion results and, to the best of our knowledge, were never
modeled for locomotor adaptation. The generalization of ad-
aptation models which were constructed based on reaching
experiments to locomotor adaptation is questionable, as the
two behaviors differ greatly in terms of neuronal substrates, the
nature of the behavior, and the role of visual feedback: loco-
motion is rhythmic, depends greatly on central pattern gener-
ators located in the spinal cord, and shows adaptation at the
spinal cord level (Heng and de Leon 2007), whereas reaching
movements are discrete, guided by visual input, and depend on
cortical substrates.

Recently, savings in locomotor adaptation was reported in a
set of psychophysical experiments (Malone et al. 2011). In
these studies savings across days was found even after a
washout of initial learning, suggesting that savings in locomo-
tion reflect enhanced learning and not residual state compo-
nents. Nevertheless, locomotor adaptation was never formally
modeled using SSMs, and the nature of parameter changes
following initial adaptation has not been examined yet.

Commonalities between the computational components
leading to adaptation and savings of reaching and locomotor
adaptation may shed light on the neuronal and mechanistic
basis of motor savings.
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Here we investigate the computational basis of locomotor
adaptation by comparing the performance of a linear dual-rate
SSM with SSMs with changing parameters (Zarahn et al.
2008), under the hypothesis that locomotor adaptation leads to
changes in learning parameters that would last beyond the
decay of the hidden state of the system. Furthermore, we were
interested in the relationship between the initial and second
adaptation phases, hypothesizing that the magnitude of savings
will be correlated with the learning achieved during the initial
exposure to adaptation. Recent results suggest that long-term
retention (savings) is affected by the slow learning process
(Joiner and Smith 2008) and that the slow process may be
sensitive to reward whereas the fast process is not (Huang et al.
2011). Furthermore, Berniker and Kording (2011) recently
suggested that the fast and slow processes represent assignment
of the source of the error to internal and external perturbations,
respectively. All these perspectives suggest that savings may
be the outcome of a slow learning and slow decaying process.
By fitting slow and fast learning components to the adaptation
and readaptation phases independently, we can investigate the
relationship between the above learning parameters.

The current study has two main aims. The first is to study the
nature of savings in locomotor adaptation by comparing linear
and nonlinear SSMs. The second aim was to explore the
relationship of the slow and fast learning components before
and after learning.

MATERIALS AND METHODS

Subjects. Forty subjects (23 males, 17 females, mean age: 25.9 �
2.7 yr) participated in the current study. All subjects were naïve to our
paradigm, without neurological history and without known distur-
bances in walking. All subjects signed the informed consent form as
stipulated by the Institutional Helsinki Committee, which reviewed
and approved all protocols.

Apparatus and general experimental procedure. Subjects were
instructed to walk on a custom split-belt force treadmill (ForceLink,
Clemborg, The Netherlands), which has two separate belts and an
embedded force plate (Fig. 1A). The speed and the direction (forward
vs. backward) of each treadmill belt were controlled independently.
The belt speed could be in one of two conditions, either moving
together at same speed (tied-belts) or moving separately at different
speeds (split-belts).

Subjects were positioned in the middle of the split-belt treadmill
with one foot on each belt. They were instructed to look straight
forward, preventing the usage of available visual feedback from the
environment regarding the speeds of the belts. For safety, all subjects
wore a safety harness that was suspended from the ceiling, and two
emergency stop buttons were available during the experiment and two
adjustable side bars were available to prevent falls. The safety harness
and the side bars did not support the subjects during the experiments.
Custom software written in C# (Microsoft Visual Studio) was used for
controlling the speed of the belts and the timing of the experiments.

Center of pressure (COP) data were sampled and recorded using
Gaitfors software (ForceLink). The system recorded the COP data at
500 Hz using one-dimension force sensors from a single large (160 �
800 mm) force plate embedded in the treadmill. COP is defined as the

Fig. 1. Experimental design and protocols. A: subjects walked on a split-belt force treadmill with 2 separated belts and an embedded force plate (white plate).
Red trace represents the center of pressure (COP) profile for 1 gait cycle. B: schematic example for 1 COP profile for 1 cycle. Left COP length was calculated
as the y (anterior-posterior) distance in the COP profile between consecutive left toe off (TO) and right initial contact (IC) and right COP length was calculated
as the y distance between consecutive right TO and left IC. C, left: protocol of experiment 1: baseline (6 min), adaptation (15 min), and washout (5 min). During
the baseline block, subjects walked with both belts at same speed (tied-belts) [0.5:0.5 m/s (2 min), 1:1 m/s (2 min), and 0.5:0.5 m/s (2 min)]. During adaptation,
subjects walked with different speeds (split-belts) (0.5:1 m/s). During washout, subjects walked on tied-belts at slow speed condition (0.5:0.5 m/s). Middle:
protocol of experiment 2: baseline (2 min), adaptation (10 min), counterperturbation (30 s), and readaptation (10 min). During the baseline block, subjects walked
on tied-belts [0.6:0.6 m/s (1 min) and 1.2:1.2 m/s (1 min)]. During adaptation, subjects walked on split-belts (0.6:1.2 m/s; slow belt under dominant leg). During
counterperturbation, the belts were set to the opposite split-belts pattern (1.2:0.6 m/s). All subjects were then reexposed to the same split-belts, as in the adaptation
block, again for 10 min, (0.6:1.2 m/s; slow belt under dominant leg). Right: protocol of experiment 3: baseline (2 min), adaptation (8 min), washout (8 min),
and readaptation (8 min). Speed condition in each block of experiment 3 was similar to experiment 2.
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projection of the resultant vertical force vector on the ground plane
(Benda et al. 1994). Determining the two coordinates (x and y) of the
COP is based on measuring the force component from each force
transducer placed on the corner of the force platform (Besser et al.
1993). The system was also able to determine representative gait
events such as initial contact (IC) and toe off (TO) for each leg
independently (Roerdink et al. 2008). In this study, our primary
adaptation measurement was COP symmetry, which has previously
been shown as a robust adaptation index (Mawase et al. 2013). COP
symmetry was defined as follows:

COP symmetry �
left COP length � right COP length

left COP length � right COP length
(1)

where left COP length was calculated as the y (anterior-posterior)
distance in the COP profile between consecutive left TO and right IC
and right COP length was calculated as the y distance between
consecutive right TO and left IC (Fig. 1B). The difference was then
normalized to the sum of the right and left COP length.

Our aim was to understand what drives adaptation and savings
during locomotion. Predominantly, we aimed to test the learning
process that underlies locomotor adaptation. To answer this ques-
tion, we began with reanalyzing previously collected data from
Mawase et al. (2013) (experiment 1). We followed up with two
additional experiments (experiments 2 and 3) in which we tested
the best variation of the SSM that explains savings during loco-
motor adaptation.

Experiment 1: adaptation-washout paradigm. For experiment 1
adaptation-washout (AW), we reanalyzed data of 10 subjects (6
males, 4 females, mean age, 25.8 � 3.4 years) from a dataset
previously reported by Mawase et al. (2013). For all subjects, the
self-identified dominant leg was the right leg. Leg dominance was
determined by asking each subject about the leg he/she uses to kick a
ball. All subjects completed three blocks: baseline, adaptation, and
washout (Fig. 1C, left). During the baseline block, subjects walked
with both belts at same speed for 6 min. They started with the “slow”
speed, then at “fast” speed, and, finally, at “slow” speed for 2 min at
each speed. We define “slow” and “fast” speeds to be 0.5 m/s and 1
m/s, respectively. During adaptation, subjects walked with the belts of
the split-belt treadmill moving at different speeds for each leg for 15
min. The belt of the left (nondominant) leg moved always at the slow
speed while the belt of the right leg moved at the fast speed. During
washout, the belts were set again to move together at the slow speed
(0.5 m/s) for 5 min.

The aim of reanalyzing the AW experiment was to test whether the
traditional single/dual-rate SSM (Smith et al. 2006), designed to study
reaching adaptation, could also account for locomotor adaptation. In
particular, the purpose was to test whether the models can capture the
shape of the error reduction and the aftereffect curves seen following
removal of the perturbation (i.e., washout).

Experiment 2: adaptation-counterperturbation-readaptation paradigm.
Seventeen naïve subjects (10 males, 7 females, mean age 26.1 � 1.8
yr) participated in experiment 2. For 16 subjects, the self-identified
dominant leg was the right leg. Subjects in the counterperturbation
experiment completed four walking blocks: baseline, adaptation,
adaptation to counterperturbation, and readaptation (Fig. 1C, mid-
dle). All subjects experienced 2 min of baseline walking on tied-belts.
They walked 1 min at “slow” speed (0.6 m/s) followed by another one
min at “fast” speed (1.2 m/s). All subjects were then adapted to
split-belts (belts split at 0.6 and 1.2 m/s; slow belt under dominant leg)
for 10 min. Subjects were then briefly adapted with opposite split-
belts (belts split at 1.2 and 0.6 m/s; fast belt under dominant leg) for
30 s. All subjects were then readapted to the split-belts presented at
the first adaptation block, again for 10 min (belts split at 0.6 and 1.2
m/s; slow belt under dominant leg).

Experiment 3: adaptation-washout-readaptation paradigm. Thir-
teen naïve subjects (7 males, 6 females, mean age 25.7 � 1.9 yr) with

right dominant leg participated in experiment 3. Subjects in the
washout experiment completed four walking blocks: baseline, adap-
tation, washout, and readaptation (Fig. 1C, right). All subjects expe-
rienced 2 min of baseline walking on tied-belts. Then they walked 1
min at “slow” speed (0.6 m/s) followed by another one min at “fast”
speed (1.2 m/s). All subjects were then adapted to split-belts (belts
split at 0.6 and 1.2 m/s; slow belt under dominant leg) for 8 min.
Subjects were then washed out with the slow tied-speed (belts tied at
0.6 m/s) for 8 min. All subjects were then readapted to the same
split-belts presented in the first adaptation block (belts split at 0.6 and
1.2 m/s; slow belt under dominant leg) for 8 min.

Modeling. Different variations of the SSM have been recently
suggested to explain adaptation and savings during force field
(Donchin et al. 2003; Smith et al. 2006), object rotation (Ingram et al.
2011), and visuomotor (Lee and Schweighofer 2009; Zarahn et al.
2008) perturbations. Most of these models assume linear time invari-
ant (LTI) properties of the parameters (Donchin et al. 2003; Ingram et
al. 2011; Lee and Schweighofer 2009; Smith et al. 2006) while the rest
model assumes varying parameters that change with experience
(Berniker and Kording 2011; Zarahn et al. 2008). All of these
error-based models suggest that trial-by-trial adaptation occurs by
updating the appropriate internal models (i.e., states) to reflect the
behavior of the perturbation. However, the varying parameter (VP)
model suggests that motor adaptation occurs by updating the param-
eters along with the states. In the current study, we compare the
prediction of three variations of the proposed SSM during locomotor
adaptation: 1) dual-rate LTI SSM (Smith et al. 2006), 2) single-rate
varying parameters SSM (Zarahn et al. 2008), and 3) dual-rate varying
parameters SSM (Zarahn et al. 2008). The equations of the models
took the following forms:

1) Dual-rate SSM:
e(n) � D·f(n) � y(n)
y(n) � xf(n) � xs(n)
xf(n � 1) � Af·xf(n) � Bf·e(n)
xs(n � 1) � As·xs(n) � Bs·e(n)
Af � As � 1, Bs � Bf � 1
2) Single-rate varying parameters SSM:
e(n) � D·f(n) � y(n)
y(n) � xf(n)
x(n � 1) � A(p)·x(n) � B(p)·e(n)
3) Dual-rate varying parameters SSM:
e(n) � D·f(n) � y(n)
y(n) � xf(n) � xs(n)
xf(n � 1) � Af(p)·xf(n) � Bf(p)·e(n)
xs(n � 1) � As(p)·xs(n) � Bs(p)·e(n)
Af(p) � As(p) � 1, Bs(p) � Bf(p) � 1

In a given trial n, e(n) is the motor error, f(n) is the external
perturbation (defined as the difference between left and right belt
speeds), and y(n) is the net motor output on the same trial (i.e., the
state of the learner). A(p) and B(p) are the forgetting and learning rate
constants that change with an experience p, respectively. Experiments
2 and 3 contain three experience phases: adaptation-counterperturba-
tion-readaptation in experiment 2 and adaptation-washout-readapta-
tion in experiment 3. D is a compliance scalar with units of seconds
per meter. The dual-rate SSM suggests that the net motor output has
two inner states xf(n) and xs(n), where xf(n) is the fast process that
reacts rapidly to motor error but has weak memory retention and xs(n) is
the slow process that reacts slowly to motor error but significantly
exhibits strong retention. To this end, it contains five free constant
parameters (Af, Bf, As, Bs, D). In the single-rate varying parameters SSM,
there is only single learning process x(n), which has varying forgetting
and learning parameters A(p) and B(p), respectively. This model contains
seven free parameters [Aadaptation, Badaptation, Adeapadtation, Bdeadaptation,
Areadaptation, Breadaptation, D] and [Aadaptation, Badaptation, Awashout,
Bwashout, Areadaptation, Breadaptation, D] for experiments 2 and 3, respec-
tively. Finally, the dual-rate varying parameters SSM, which has 13
free parameters, suggests that the net motor output has a single state
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in the fast process and a single state in the slow process for each
experience phase (i.e., adaptation/counterperturbation/washout/read-
aptation). In addition, the motor output/perturbation [i.e., y(n)/f(n) �
1 � e(n)/f(n)] represents the predicted amount of adaptation in each
trial.

We searched for the best model that simultaneously accounts for
adaptation and savings during locomotion. Model selection was per-
formed by the Akaike Information Criterion (AIC) (Akaike 1974),
computed for the single subject data. For each candidate model, the
AIC value reflects the combination of fitting amount along with the
number of free parameters, and the optimal model is identified by
the minimum value of AIC. Thus the difference in AIC values of two
candidate models would provide strong indication toward the best
fitting model.

AIC � 2 · k � n · ln(L) (2)

where k is the number of free parameters, n is the number of data
points, and L is the maximized value of the likelihood function for the
estimated model. Under the assumption that the model errors are
independent and identically normally distributed, we can rewrite the
criterion as follow:

AIC � 2 · k � n · ln(�r
2) (3)

where �r is the standard deviation of the residual errors between the
actual and predicted data. AIC analysis is critical for our study to
account for the increase in number of free parameters introduced in
the varying parameters SSM models.

We estimated the parameters of the models by using the fmincon
routine performed by Matlab that maximized the log likelihood. In all
experiments, the estimated error of each model was fitted to the
individual subject’s data. In experiments 2 and 3, the estimated error
was fitted simultaneously to all three phases. Thereafter, we calculated
the mean and the standard error for each parameter in each experiment
phase for further comparison analysis.

For each adaptation and readaptation phase and for each individual
subject, we quantified the initial error as the motor error of the first
trial and mid-error as the average of the trials 2–30. This method has
previously been shown as a robust savings measurement index (Ma-
lone et al. 2011). Following the definition of savings by previous
works as an increase in the rate of error reduction following initial
learning (Huang et al. 2011; Malone et al. 2011; Zarahn et al. 2008), we
fit a single exponential function, which has the form y(n) � a·e�n/b � c,
to each subject’s data to estimate the rate of error reduction. More-
over, savings was also quantified as the difference between mid-errors
across the two adaptation blocks. In addition, we defined “initial bias”
as the difference between initial errors across the two adaptation
blocks.

Statistical analysis. Statistical analysis of the data was performed
using the Matlab software with Statistics Toolbox (The MathWorks,

Natick, MA). We used repeated-measure analyses of variance (ANOVARM)
to compare differences between AIC values of the models in exper-
iments 2 and 3. When significant differences were found, post hoc
analyses were performed. The Shapiro-Wilk W-test with an alpha
level of 0.05 was used to assess the t-test assumption of normality on
the AIC difference values across subjects. When the P value was
greater than the chosen alpha level, a paired t-test was used to
compare the difference in AIC between models. Otherwise, nonpara-
metric Wilcoxon matched-pair signed-rank test was used for compar-
ison. Correlation between learning parameters (i.e., Bf and Bs) and
motor errors was evaluated using the Pearson correlation coefficients.
The free parameters and their confidence intervals of the single
exponential function were estimated using the Matlab software with
the Curve Fitting Toolbox. A two-tailed t-test was used to compare
initial error and mid-error in experiments 2 and 3. Significance level
was set to 0.05.

RESULTS

Experiment 1: learning processes in locomotor adaptation.
We first sought to test the hypothesis whether basic LTI
single-rate or dual-rate learning process could explain the
fundamental principles of locomotor adaptation time course,
i.e., the error reduction during the perturbation block and,
predominantly, the aftereffect during the washout block. To
this end, we reanalyzed our previous published data (Mawase
et al. 2013). Figure 2A shows the learning process during
adaptation to speed perturbation using the split-belt system.
During the baseline phase (i.e., zero perturbation), COP sym-
metry (i.e., motor error) values were close to zero, mean error
at the baseline phase across subjects was 0.007 � 0.042
(means � SD), which indicates a symmetric pattern of loco-
motion. During early adaptation, there was a significant posi-
tive value of the error. The mean error over the first two trials
was 0.56 � 0.077 (means � SD). This positive value of error
decreased slowly throughout the adaptation phase, reaching an
error rate of 0.128 � 0.046 over the last 10 trials. In the early
postadaptation phase (washout), there was a clear negative
aftereffect, indicated by mean error of �0.57 � 0.079 over the
first two trials. This reverse pattern gradually returned to
baseline values, reaching error value of �0.067 � 0.047 over
the last 10 trials.

We fit the single-rate SSM as well as the dual-rate SSM to
the trial series of the motor error for each subject from
experiment 1. The single-rate model has one state, whereas the
dual-rate model proposed that the motor output has two inde-

Fig. 2. Group data and model prediction
during experiment 1. A: across-subject aver-
aged COP symmetry (gray points) in each
gait cycle and the fitted linear time invariant
(LTI) single-rate state space model (SSM)
(blue line) and dual-rate SSM (red line).
B: across-subject averaged Akaike Informa-
tion Criterion (AIC) for the single-rate SSM
(blue bar) and for the dual-rate SSM (red
bar), respectively. Error bars indicate SE.
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pendent states, a fast state that reacts rapidly to motor error but
has strong forgetting rate, and one slow state that reacts slowly
to motor error but significantly exhibits strong retention (see
MATERIALS AND METHODS). Since there is only one adaptation
phase in experiment 1, the single-rate LTI model is identical to
the single-rate varying parameters model. The two SSMs
models were computed separately for each subject and simul-
taneously to all phases of the experiment. The across-subject
averages of the parameter estimates from the single-rate SSM
were A � 0.9939 � 0.0017 (means � SE), B � 0.0153 � 0.0047,
and D � 1.0944 � 0.1429, and the across-subject averages of the
parameter estimates from the dual-rate SSM were Afast � 0.6885 �
0.1367 (means � SE), Aslow � 0.9979 � 0.0009, Bfast �
0.0.1781 � 0.0827, Bslow � 0.0094 � 0.0023, and D �
1.3958 � 0.1115. To qualitatively illustrate the time courses of
the different SSMs during experiment 1, we fitted the two
models to the across-subject averaged data (Fig. 2A). As shown
in Fig. 2A, the two models did a responsible job of explaining
adaptation and aftereffect during the first experiment.

To select the best model, we used the AIC to account for the
different number of parameters in each model. For each can-
didate model, the AIC value reflects the combination of the
goodness of fitting along with the number of free parameters.
That is, the AIC difference between two candidate models
would provide strong evidence in favor of the model with the
lower AIC value. To assess the normality assumption of the
t-test on the AIC difference values across subjects, we used
the Shapiro-Wilk W-test. We found that the W value was
insignificant at alpha level of 0.05, suggesting that the assump-
tion of normality of the AIC distribution is valid (W � 0.92, P �
0.39). Figure 2B shows the mean AIC across subjects for each
model. The AIC of the dual-rate SSM (�4112.9 � 140.6,

means � SE) was comparable to the AIC of the single-rate
model (�4091.4 � 136.5, means � SE). The t-statistic reveals
that no difference was observed in the AIC of the two models
[two-tailed paired t-test, t(9) � 1.83, P � 0.11], indicating that
both models fit well the behavioral data of the first experiment.
However, neither savings nor anterograde interference can be
examined in this type of experimental paradigm. Therefore, we
designed two additional experiments to test these phenomena.

Experiment 2: savings in counterperturbation paradigm. In
the second experiment, we sought to quantify within-day
savings effects and to find whether the single-rate or the
dual-rate SSM, which showed a good fit to single phase
locomotor adaptation, can also explain the faster relearning
phenomenon (e.g., savings). To this end, we asked subjects to
relearn the same split-belt perturbation after a brief counter-
perturbation period that erased the initial adaptation (Fig. 3A).
During counterperturbation phase, the error of the last five
strides was on average �0.64 � 0.04 (means � SE), which is
not significantly different [t(16) � 0.986, P � 0.3385] from the
magnitude of the �0.6 counter perturbation [defined as the
difference between left (0.6 m/s) and right (1.2 m/s) belt
speeds]. This result indicates that subjects had completely
erased their initial adaptation but did not start adapting to the
counterperturbation. Subjects exhibited strong savings during
relearning of the same perturbation. Mid-error during readap-
tation, computed based on strides 2–30 (0.22 � 0.04, means �
SE), was significantly lower [two-tailed paired t-test, t(16) �
8.96, P � 0.0001] than the mid-error during adaptation (0.47 �
0.03). That is, following initial adaptation, subjects learned the
perturbation significantly faster (Fig. 3B), indicating the exis-
tence of savings. Furthermore, we measured the effect of
savings by estimating directly the learning rates during adap-

Fig. 3. Group data and models predictions during experiment 2. A: across-subject averaged COP symmetry (gray points). Colored lines represent the fits of the
SSM models: green line represents the prediction of the LTI dual-rate SSM, blue line represents the prediction of the varying parameters (VP) single-rate SSM,
and red line represents the prediction of the varying parameters dual-rate SSM. Inset: across-subject averaged AIC for each model, respectively. B: mid-errors
averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). C: average learning rate of a single exponential fit to individual
subject data from adaptation (light gray bar) and readaptation (dark gray bar). D: initial errors averaged across subjects during adaptation (light gray bar) and
readaptation (dark gray bar). Error bars indicate SE. *P � 0.05; ***P � 0.001.
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tation and readaptation before and after adaptation. Indeed, the
learning rate of the exponential function in the readaptation
block (0.28 � 0.1 trial�1) was higher [t(16) � 2.24, P � 0.05]
than the learning rate of the initial adaptation block (0.04 �
0.008 trial�1; Fig. 3C). We could not find evidence for initial
bias; analyzing the error of the first trial revealed that there was
no deference in COP symmetry between adaptation and read-
aptation [t(16) � 1.66, P � 0.12; Fig. 3D].

Three alternative models of the behavioral data in experi-
ment 2 were compared. The first was the LTI multiple time-
scales (i.e., LTI 2-Rate), which has two states, one fast and one
slow (see MATERIALS AND METHODS). The second was the single-
rate varying parameters SSM (i.e., VP 1-Rate), which has a
single learning process that has forgetting and learning param-
eters that could vary across phases. The last one was the
dual-rate varying parameters SSM (i.e., VP 2-Rate), which has
single state in the fast process and single state in the slow
process with varying forgetting and learning parameters. The
VP models were fitted for each phase separately, namely: one
fit for adaptation, one for counterperturbation, and one for the
readaptation phase. The three SSMs models were computed
separately for each subject and simultaneously to all three
phases of the experiment. The across-subject averages of the
parameter estimates are provided in Table 1. To qualitatively
illustrate the time courses of the different SSMs during exper-
iment 2, we fitted the three models to the across-subject
averaged data (Fig. 3A). As shown in Fig. 3A, the LTI 2-Rate
SSM did a responsible job of explaining adaptation and savings

during readaptation. Although the VP 1-Rate SSM did a good
job explaining adaptation, it explained poorly savings during
readaptation, yielding too rapid readaptation. VP 2-Rate SSM
fit well the averaged data overall.

To select the best model, we again used the AIC to account
for the different number of parameters in each model. The
Shapiro-Wilk W-test on the AIC differences across subjects
reveals that none of the W values was significant, suggesting
weak evidence to reject the null hypothesis of normally dis-
tributed population (P � 0.47). Figure 3A, inset, shows the
mean AIC across subjects for each model. ANOVA showed
main effect of model on AIC measures (F2,16 � 4.87, P �
0.05). The AIC of the VP 1-Rate SSM (�4,776.2 � 23.0,
means � SE) was significantly lower [two-tailed paired t-test,
t(16) � 3.46, P � 0.01] than that of the LTI 2-Rate SSM
(�4,710.0 � 30.9). The AIC of the VP 2-Rate SSM (�4,770.9 �
21.6) tended toward being favored [two-tailed paired t-test,
t(16) � 1.95, P � 0.069] over the LTI 2-Rate SSM.

To summarize experiment 2, the models with changing
parameters between adaptation and readaptation explain the
performance of single subjects better than the canonical two-
rate SSM.

Experiment 3: savings in washout paradigm. In the third
experiment, we examined whether completely erasing the
learned pattern by exposing subjects to a prolonged washout
period would affect future locomotor savings and whether one
of the candidate SSM models could account for that. To this
end, we asked subjects to relearn after a prolonged washout
period (Fig. 4A). Comparing the mean errors of the last five
strides of the washout phase (0.011 � 0.03, means � SE) and
the mean errors of the last five strides of the baseline phase
(0.014 � 0.01, means � SE) showed no significant differences
in error rates [two-tailed paired t-test, t(12) � 0.08, P � 0.9],
indicating that subjects had completely returned to their base-
line performance. Subjects demonstrated strong savings when
they were reexposed to the same perturbation for the second time.
The mid-error during readaptation (0.36 � 0.04, means � SE)
was significantly lower [two-tailed paired t-test, t(12) � 9.04,
P � 0.0001] than the mid-error during adaptation (0.59 � 0.04,
means � SE). Therefore, savings (i.e., the difference between
the mid-errors) is significantly evident in the adaptation-wash-
out-readaptation experiment [one-sample t-test, t(12) � 9.04,
P � 0.001; Fig. 4B]. Estimating the learning rate of a single
exponent function revealed similar results. We found that the
estimated learning rate of the exponential function in the
readaptation phase (0.06 � 0.01 trial�1) was higher [t(12) �
3.5, P � 0.01] than the time learning rate of the initial
adaptation (0.04 � 0.004 trial�1; Fig. 4C). Consistent with
experiment 2, analyzing the error of the first trial revealed that
there was no difference in COP symmetry between adaptation
and readaptation [t(12) � 1.94, P � 0.08; Fig. 4D].

Similarly to experiment 2, the three suggested SSMs models
were computed separately for each subject and simultaneously
in all three phases of the experiment. The across-subject
averages of the parameter estimates are also provided in Table
1. To qualitatively illustrate the time courses of the different
SSMs during experiment 3, we fitted the three models to the
across-subject averaged data (Fig. 4A). As shown in Fig. 4A,
the LTI 2-Rate SSM and the VP 1-Rate SSM could not capture
the savings phenomenon during readaptation, whereas the VP
2-Rate SSM fit the averaged data very well overall.

Table 1. Across-subject averages of the SSM parameters during
phase 1 (i.e., adaptation) and phase 3 (i.e., readaptation) of
experiment 2 and 3

VP Dual-Rate VP Single-Rate LTI Dual-Rate

Experiment 2
Phase 1

Afast 0.4254 � (0.1061) N/A 0.4403 � (0.099)
Aslow 0.9962 � (0.001) 0.9952 � (0.001) 0.9986 � (0.001)
Bfast 0.1006 � (0.035) N/A 0.0861 � (0.036)
Bslow 0.0241 � (0.005) 0.0227 � (0.005) 0.0092 � (0.002)
D 1.2740 � (0.047) 1.0511 � (0.062) 0.8191 � (0.045)

Phase 3
Afast 0.7147 � (0.0590) N/A N/A
Aslow 0.9724 � (0.0155) 0.9445 � (0.019) N/A
Bfast 0.3283 � (0.0596) N/A N/A
Bslow 0.0837 � (0.0263) 0.3120 � (0.065) N/A
D 1.2740 � (0.047) 1.0511 � (0.062) N/A

Experiment 3
Phase 1

Afast 0.2011 � (0.0976) N/A 0.4778 � (0.1245)
Aslow 0.9965 � (0.0008) 0.9959 � (0.0008) 0.9949 � (0.0016)
Bfast 0.0739 � (0.0394) N/A 0.0646 � (0.0242)
Bslow 0.0134 � (0.0023) 0.0134 � (0.0024) 0.0139 � (0.0032)
D 1.3078 � (0.0688) 1.1871 � (0.0676) 1.2086 � (0.0597)

Phase 3
Afast 0.6103 � (0.0837) N/A N/A
Aslow 0.9879 � (0.0037) 0.9767 � (0.0052) N/A
Bfast 0.2222 � (0.0379) N/A N/A
Bslow 0.0395 � (0.0115) 0.0756 � (0.0171) N/A
D 1.3078 � (0.0688) 1.1871 � (0.0676) N/A

Values are means with SE in parentheses. VP Dual-Rate, varying parameters
dual-rate state space model (SSM); VP Single-Rate, varying parameters
single-rate SSM; LTI, linear time invariant; A, forgetting rate constant; B,
learning rate constant; D, compliance scalar with units of seconds per meter;
N/A, parameter not applicable for that model.
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Figure 4A, inset, shows the mean AIC across subjects for
each model. To assess data normality, we used the Shapiro-
Wilk W-test on the AIC differences across subjects. We found
two out of three W values were insignificant (P � 0.08),
indicating that these differences are probably normally distrib-
uted. However, the W value of the AIC differences between VP
2-Rate and VP 1-Rate was significant (P � 0.02). To this end,
we follow with nonparametric Wilcoxon matched pair signed-
rank test to compare the difference between VP 2-Rate with VP
1-Rate. ANOVA showed main effect of model on AIC mea-
sures (F2,12 � 15.64, P � 0.01). We found that the AIC of the
VP 2-Rate SSM (�4,911.5 � 30.7, means � SE) was signif-
icantly lower [two-tailed paired t-test, t(12) � 4.692, P �
0.001] than that of the LTI 2-Rate SSM (�4,690.0 � 32.9).
Additionally, the AIC of the VP 2-Rate SSM was significantly
lower (Wilcoxon matched pair signed-rank test, P � 0.01) than
that of the VP 1-Rate SSM (�4867.3 � 29.6).

To summarize experiment 3, the dual-rate model with
changing parameters between adaptation and readaptation after
a prolonged period of washout explains the performance of
single subjects significantly better than the canonical LTI
dual-rate model and the varying parameters single-rate model.

Parameter changes associated with savings. Following the
initial stages of model selection, showing that VP 2-Rate SSM
explains savings effects better in experiment 3, we asked which
parameters change following initial learning in both experi-
ments. Figure 5A shows the slow and fast state estimates from
the VP 2-Rate SSM to the across-subject averaged data during
experiment 2. Both learning rates (i.e., Bf and Bs) and forget-
ting rates (i.e., Af and As) changed following adaptation.
Analyzing the across-subject averages of the parameter esti-
mates reveals that the forgetting rate of the fast state (i.e., Af)
in adaptation (0.43 � 0.1, means � SE) was significantly

lower [two-tailed t-test, t(32) � 2.384, P � 0.05] than the
forgetting rate of the fast state in readaptation (0.71 � 0.06;
Fig. 5B), whereas the change of the forgetting rate of the slow
state (i.e., As) was not significant [two-tailed t-test, t(32) �
1.526, P � 0.14] across blocks (0.99 � 0.01 and 0.97 � 0.02
in adaptation and readaptation, respectively; Fig. 5C). More-
over, the learning rate of the fast state (i.e., Bf) in adaptation
(0.1 � 0.04) was significantly increased [two-tailed t-test,
t(32) � 3.291, P � 0.01] during readaptation (0.33 � 0.06;
Fig. 5D), and the learning rate of the slow state (i.e., Bs) in
adaptation (0.024 � 0.01, means � SE) was significantly
increased [two-tailed t-test, t(32) � 2.223, P � 0.05] during
readaptation (0.08 � 0.03; Fig. 5E).

A similar picture is seen in experiment 3 (Fig. 6A), where
both learning and forgetting rates of the slow and fast learning
components have changed. The forgetting rate of the fast state
(i.e., Af) in adaptation (0.20 � 0.1, means � SE) was signif-
icantly lower [two-tailed t-test, t(24) � 3.182 P � 0.01] than
the forgetting rate of the fast state in readaptation (0.61 � 0.08;
Fig. 6B), and the forgetting rate of the slow state (i.e., As) in
adaptation (0.996 � 0.001) was also significantly higher [two-
tailed t-test, t(24) � 2.305 P � 0.05] than the forgetting rate of
the slow state in readaptation (0.987 � 0.02; Fig. 6C). More-
over, the learning rate of the fast state (i.e., Bf) in adaptation
(0.07 � 0.04) was significantly increased [two-tailed t-test,
t(24) � 2.714, P � 0.05] during readaptation (0.22 � 0.04;
Fig. 6D), and the learning rate of the slow state (i.e., Bs) in
adaptation (0.013 � 0.002, means � SE) was also significantly
increased [two-tailed t-test, t(24) � 2.23, P � 0.05] during
readaptation (0.04 � 0.01; Fig. 6E). From the fits of the
averaged date presented in Fig. 6A, it seems that the adaptation
process could be captured by only a single slow state with no
contribution of a fast state. Nevertheless, learning rates from

Fig. 4. Group data and models predictions during experiment 3. A: across-subject averaged COP symmetry (gray points). Color lines represent the fits of the SSM
models: green line represents the prediction of the LTI dual-rate SSM, blue line represents the prediction of the varying parameters single-rate SSM, and red
line represents the prediction of the varying parameters dual-rate SSM. Inset: across-subject averaged AIC for each model, respectively. B: mid-errors averaged
across subjects during adaptation (light gray bar) and readaptation (dark gray bar). C: average learning rate of a single exponential fit to individual subject data
from adaptation (light gray bar) and readaptation (dark gray bar). D: initial errors averaged across subjects during adaptation (light gray bar) and readaptation
(dark gray bar). Error bars indicate SE. *P � 0.05; **P � 0.01; ***P � 0.001.
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the single-subject fits of the fast components of the adaptation
phase tend to be higher than zero [t(12) � 2.1, P � 0.06 for Af
and t(12) � 1.9, P � 0.08 for Bf], suggesting that across
subjects, the fast component did play a role in the initial
adaptation block.

Although initial bias did not reach significance levels, there
was a trend towards a decrease in initial error in readaptation
compared with adaptation in both experiments (Figs. 3D and
4D). To obviate a possible bias influence on the estimation of
learning parameters in our models during the readaptation
phase, we have added a free parameter in our varying param-
eters model that represents an initial bias (e.g., a possible bias
effect) during readaptation. Consistent with our previous re-
sults, we found similar changes in learning parameters follow-
ing initial learning. Adding this additional parameter did not
affect the AIC results favoring the VP models. Thus our
suggested model is robust for possible bias effects.

Correlation of savings, adaptation, and learning parameters. Pre-
vious attempts to explain savings used a LTI model with two
learning components (LTI 2-Rate SSM), showing that the slow
forgetting of the slow learning component can account for
various savings phenomena (Smith et al. 2006). Nevertheless,
consistently with the results of Zarahn et al. (2008), we show
here that also in locomotor adaptation, models with varying
parameters account better for savings effects in adaptation-
counterperturbation-readaptation and adaptation-washout-re-
adaptation paradigms, suggesting that different learning pa-
rameters are expressed before and after learning. Still, the fact
that learning parameters change through learning does not
mean that they are independent; it could be that the changes in
parameters following learning are correlated with their initial
values. Such dependency will be indicative of the mechanisms
that give rise to savings. We therefore investigated the corre-
lation of error rates and learning parameters as seen in the

Fig. 5. Adaptation of the slow and fast components of the varying parameters dual-rate SSM during experiment 2. A: net (dashed black line), slow (dark gray
line), and fast state (light gray line) estimates from the VP 2-Rate SSM to the across-subject averaged data. B: forgetting rates of the fast process (i.e., Afast)
averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). C: forgetting rates of the slow process (i.e., Aslow) averaged across
subjects during adaptation (light gray bar) and readaptation (dark gray bar). D: learning rates of the fast process (i.e., Bfast) averaged across subjects during
adaptation (light gray bar) and readaptation (dark gray bar). E: learning rates of the slow process (i.e., Bslow) averaged across subjects during adaptation (light
gray bar) and readaptation (dark gray bar). Error bars indicate SE. *P � 0.05; **P � 0.01.

Fig. 6. Adaptation of the slow and fast components of the varying parameters dual-rate SSM during experiment 3. A: net (dashed black line), slow (dark gray
line) and fast state (light gray line) estimates from the VP 2-Rate SSM to the across-subject averaged data. B: forgetting rates of the fast process (i.e., Afast)
averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). C: forgetting rates of the slow process (i.e., Aslow) averaged across
subjects during adaptation (light gray bar) and readaptation (dark gray bar). D: learning rates of the fast process (i.e., Bfast) averaged across subjects during
adaptation (light gray bar) and readaptation (dark gray bar). E: learning rates of the slow process (i.e., Bslow) averaged across subjects during adaptation (light
gray bar) and readaptation (dark gray bar). Error bars indicate SE. *P � 0.05; **P � 0.01.
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intersubject correlation patterns between adaptation and read-
aptation blocks. We started by examining the intersubject
correlation of the initial and middle error rates in the adaptation
and readaptation phases. We found that both initial errors and
middle errors in readaptation significantly correlated with mid-
dle errors in the adaptation phase (all comparisons reveal 0.60 �
r � 0.76 and 0.0007 � P � 0.029, Fig. 7, A and B), indicating
that early readaptation is correlated with subjects’ behavior
during the initial adaptation phase. We then moved to exam-
ining the correlation pattern of the estimated learning param-
eters that could potentially provide a refined estimation of the
source of correlation that we have seen in error rates. We found
that out of the four possible pairs of learning rate correlations
(slow and fast adaptation rates vs. slow and fast readaptation
rates) in each experiment, only the slow adaptation and fast
readaptation learning parameters were significantly correlated
in both experiments [r � 0.56, P � 0.019 (Pearson correlation
test) for experiment 2 (Fig. 7C, top) and r � 0.73, P � 0.0043 for
experiment 3 (Fig. 7C, bottom), respectively]. In both tests there
are four comparisons that require correcting for false positive
rates. Applying these corrections using Bonferroni correction
results in a significant effect for the slow adaptation and fast
readaptation learning parameters for experiment 3 and a mar-
ginal result for experiment 2 (P � 0.019 where the corrected
threshold was 0.0125). Nevertheless, the consistency of results
in the two experiments and across the two measurements (of
error rates and learning parameters) suggests that the correla-
tion between readaptation learning and the slow initial adap-
tation is not spurious. Another concern about the current
correlation results is that while the correlations between middle
errors in adaptation and readaptation epochs were significant,
the correlations of the slow learning parameters (i.e., Bs) in

both these periods were not. At this point we cannot tell
whether this apparent inconsistency is a due to the fact that the
middle error correlations is driven by the correlation between
the slow and fast learning parameters in the adaptation and
readaptation epochs, respectively, or due to our limited sensi-
tivity to detect correlations between the slow learning param-
eters in the two epochs.

DISCUSSION

Using the split-belt treadmill paradigm, we examined the
learning mechanisms underlying adaptation and savings during
the learning of a novel locomotor task. In the first experiment,
we reanalyzed our previous results (Mawase et al. 2013) to
establish the computational model of the basic learning process
within a simple adaptation paradigm. However, the data from
the first experiment missed an important phenomenon of motor
learning: savings. Therefore, we designed two additional ex-
periments to test for savings effects. Based on several experi-
mental paradigms developed for reaching adaptation (Krakauer
et al. 2005; Smith et al. 2006; Zarahn et al. 2008), we chose the
adaptation-counterperturbation-readaptation (i.e., experiment
2) and the adaptation-washout-readaptation (i.e., experiment 3)
protocols to test the underlying learning process for savings.
We found that while multiple-rate SSM can account for initial
error reduction and aftereffects of the simple adaptation para-
digm (i.e., experiment 1), it failed to explain savings in the
second and the third experiments. Instead, we found that
allowing the parameters of the dual-rate state space learning
process to change following initial learning can successfully
explain savings effects seen in both protocols. This supports
the hypothesis that locomotor adaptation leads to changes in
the fast and slow learning parameters that would last beyond

Fig. 7. Correlation of the errors and learn-
ing parameters during experiments 2 and 3.
A: cross-correlation between middle errors in
adaptation and middle errors in readaptation
during experiment 2 (top) and experiment 3
(bottom). B: cross-correlation between middle
errors in adaptation and initial errors in read-
aptation during experiment 2 (top) and exper-
iment 3 (bottom). C: cross-correlation between
the slow adaptation parameter (i.e., Bslow1) and
fast readaptation learning parameter (i.e.,
Bfast3) estimate from the VP 2-Rate SSM dur-
ing experiment 2 (top) and experiment 3 (bot-
tom).
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the decay of the hidden state of the motor system. Furthermore,
analyzing the intersubject variability provides a suggestive
causal relationship between the slow and fast learning compo-
nents before and after learning, respectively. Particularly, we
found that the fast relearning rate depends on the slow learning
rate during adaptation, suggesting that the magnitude of sav-
ings will be proportional to the learning achieved during the
prolonged exposure to adaptation. Together, these findings
shed new insights into the formation of motor memory.

Our model-comparison results are consistent with a recent
study where savings effects in reaching visuomotor adaptation
paradigms were examined (Zarahn et al. 2008). Zarahn et al.
(2008) suggested a nonlinear time invariant SSM to properly
account for savings during the readaptation phase. This non-
linear behavior underlies the metalearning process by allowing
changes in the learning parameters in an experience-dependent
manner. A key aspect of the model is that consequent adapta-
tion phases are associated with adjustable learning and forget-
ting rates. We found significantly different learning and for-
getting parameters across the phases of an adaptation experi-
ment (Figs. 5 and 6). Suggestive changes in learning
parameters can also be seen in a recent locomotor adaptation
study, where Malone et al. (2011) found that different adapta-
tion structures affect significantly the retention of the motor
memory during readaptation on the subsequent day. The faster
relearning rate on the subsequent day provides evidence of the
involvement of a nonlinear learning process in locomotor
adaptation. While the results of Malone were not modeled, we
show here that indeed a LTI model cannot account for several
within-day savings phenomena and provide a suggestive un-
derlying mechanism for this effect.

Recently, context-dependent linear models with either single
or multiple slow states have been suggested to explain savings
during visuomotor rotation (Lee and Schweighofer 2009),
force-field adaptation (Pekny et al. 2011), and object rotation
(Ingram et al. 2011). According to the context-dependent
learning approach, motor adaptation occurs through a fast and
a slow contextual learning process that is updated simultane-
ously by the same motor errors. Savings occurs by switching
back to a previously learned internal model (slow process). A
noticeable limitation of the context-dependent model is that it
does not account for consolidation after learning (Criscimagna-
Hemminger and Shadmehr 2008) or adaptation across days
(Kording et al. 2007). The fact that all the slow states decay
with time needs to be refined, as subjects clearly retain across
days (Malone et al. 2011). Furthermore, the changes in the fast
learning process following adaptation suggest that savings
cannot be explained only by the changes in slow learning
processes and requires modification of the fast process as well,
a property that does not exist in the current context-dependent
learning approach. Together, our behavioral and computational
results strongly lead to the conclusion that savings occurs
through changes in learning parameters (meta-learning) and
not by switching between hidden learning states.

Although individuals learn differently a given motor task in
terms of learning rates, most of the previous studies focused on
averaged learning rates measured across subjects, leaving the
intersubject variability completely unexplored. In the current
study, we studied the relationship between the slow and fast
learning components before and after learning. Using VP-2
SSM parameters, we found a significant correlation between

the slow learning rate during adaptation and the fast learning
rate during readaptation (Fig. 7). These results are also found
when looking at the correlation between initial and middle
errors during adaptation and during readaptation phases. Thus
the magnitude of savings for each subject was proportional to
the learning achieved by the slow learning process. These
findings suggest that even though the varying parameters
model accounted for our result better than the fixed parameter
model, learning parameters during adaptation and readaptation
are not independent and may be subjected to a higher learning
process that modulates the learning parameters following
learning. Our interpretation of the positive correlation between
the fast state during readaptation and the slow state during
initial adaptation is that savings is predominantly the outcome
of a slow learning and slow decaying process of initial adap-
tations. This conclusion is consistent with recent works that
emphasize the role of the slow process in long-term retention
(Joiner and Smith 2008), in estimation of the source of error
(Kording et al. 2007), and in savings in force filed adaptation
(Smith et al. 2006).

Despite multiple differences between reaching and locomo-
tor adaptation, we found that learning in both behaviors can be
explained using the same VP models and, in both paradigms,
savings depend on the slow learning process. Thus a reason-
able conjecture is that the two learning behaviors also share a
similar neuronal basis. Two predominant brain areas are likely
to be involved in adaptation learning: cerebellum and motor
cortex (Shmuelof and Krakauer 2011). Several studies sug-
gested that the cerebellum is involved in error-based learning
(Atkeson 1989; Diedrichsen et al. 2005; Kawato et al. 1987;
Miall et al. 2007), and damage to the cerebellum hampers the
ability to adapt to external perturbations based on sensory
prediction errors (Ilg et al. 2008; Maschke et al. 2004; Morton
and Bastian 2004, 2006; Tseng et al. 2007). Recently, Jayaram
et al. (2012) used a noninvasive transcranial magnetic stimu-
lation to show that the cerebellum excitability is modulated
during locomotor adaptation. Furthermore, Galea et al. (2011)
found that noninvasive stimulation using tDCS over the cere-
bellum enhances error-reduction during visuomotor reaching
adaptation task. Interestingly, this stimulation did not affect
subsequent savings. Thus the cerebellum is needed for adap-
tation learning in reaching and locomotion and is likely to
affect the rate of the learning. The motor cortex, on the other
hand, has been shown to be involved in retention of adaptive
patterns (savings) but not directly in adaptation, as patients
with stroke in the motor systems can adapt (Reisman et al.
2007; Scheidt et al. 2000; Scheidt and Stoeckmann 2007). In
the same study of Galea et al. (2011), stimulation over the
primary motor cortex did not change the learning rate of
reaching adaptation but increased its subsequent savings.
Taken together, while the cerebellum is likely to be vital for the
fast learning process, we speculate that the savings in our study
depends on primary motor cortex processes that are likely to
affect behavior through the slow learning process. The fact that
we did find correlations between the slow learning process and
the fast relearning process suggests that the two learning
processes are not independent. It remained to be seen whether
the enhancement of the fast process is retained in the cerebel-
lum or is the result of the feedforward control over the
locomotion pattern controlled by the cortex or by the controller
itself, located in the cortex and the spinal cord.
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We conclude that adaptation and savings in locomotion
occur through modulation of learning parameters in a dual-rate
model. These changes are consistent with results in reaching
adaptation, suggesting a common mechanism for savings,
which is likely to depend on the motor cortex. It would be
interesting to investigate our within-day savings results with
savings across days to further elucidate the dynamics of pa-
rameter changes following initial adaptation.
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